100 research outputs found

    Regional genetic structure in the Magellanic penguin (Spheniscus magellanicus) suggests metapopulation dynamics

    Get PDF
    Using microsatellite markers and mitochondrial DNA (mtDNA) sequences (cytochrome oxidase 1 gene), we estimated levels of genetic structuring among nine Magellanic Penguin (Spheniscus magellanicus) colonies distributed throughout three major reproductive regions of the South Atlantic Ocean. Overall, breeding colonies showed relatively high levels of genetic diversity at both nuclear and mtDNA markers (mean heteorzygosity: He = 0.598; mean allelic diversity: A = 7.11; mtDNA haplotype diversity: h = 0.812). A hierarchical analysis of molecular variance based on microsatellite data showed limited genetic structuring of breeding colonies, with 99% of the variation explained by differences among individuals and 0.7–1.0% attributed to differences among the three regions. The mtDNA analysis revealed higher levels of genetic structuring, with 3.43% of the variation explained by regions and 2.24% explained by colonies within the regions. Furthermore, a Mantel test revealed a significant association between geographic and genetic distances among colonies. The limited genetic structuring we detected is likely a result of (1) population intermixing through natal dispersal and (2) the large effective sizes of the reproductive colonies, both of which prevent genetic differentiation at neutral markers, balanced with (3) the regional association of breeding colonies to distinct feeding grounds and (4) a recent expansion of the population. Our results suggest that the demographic dynamics of breeding colonies of Magellanic Penguins may be framed under a metapopulation model, in which colonies with large numbers of breeding pairs could be considered source populations for maintaining the overall abundance of this species in the Atlantic Ocean

    Physiological condition in Magellanic Penguins: Does it matter if you have to walk a long way to your nest?

    Get PDF
    Colony edges, as opposed to interiors, are often considered less advantageous nesting places in colonial species. For temperate-breeding penguins, inland colony edges should be less desirable than other edges, as there are added costs of walking farther inland, and ambient temperatures are higher. During settlement and incubation, we compared body condition and baseline and stress-induced levels of the hormone corticosterone in male Magellanic Penguins (Spheniscus magellanicus) nesting on the sea edge of a colony with those nesting on the inland edge, \u3e800 m from shore. Body condition in both groups was significantly lower during settlement than during incubation, but was similar in both groups within breeding stages. Corticosterone levels were similar between breeding stages and for groups within each breeding stage. While body condition can vary over time, penguins appear to be well buffered to physiological extremes, as they do not show modification of corticosterone levels with variations in nesting conditions

    Sex Ratio is Variable and Increasingly Male Biased at Two Colonies of Magellanic Penguins

    Full text link
    Sex ratios are commonly skewed and variable in wild populations, but few studies track temporal trends in this demographic parameter. We examined variation in the operational sex ratio at two protected and declining breeding colonies of Magellanic Penguins (Spheniscus magellanicus) in Chubut, Argentina. Penguins from the two colonies, separated by 105 km, migrate north in the non‐breeding season and have overlapping distributions at sea. Conditions during the non‐breeding season can impact long‐term trends in operational sex ratio (i.e., through sex‐specific survival) and interannual variation in operational sex ratio (i.e., through sex‐specific breeding decisions). We found an increasingly male‐biased operational sex ratio at the two disparate colonies of Magellanic Penguins, which may contribute to continued population decline. We also found that the two colonies showed synchronous interannual variation in operational sex ratio, driven by variation in the number of females present each year. This pattern may be linked to sex‐specific overwintering effects that cause females to skip breeding, i.e., to remain at sea rather than returning to the colony to breed, more often than males. Contrary to our predictions, colony‐wide reproductive success was not lower in years with a more male‐biased operational sex ratio. We did find that males showed more evidence of fighting and were less likely to pair when the operational sex ratio was more male biased. Our results highlight an indirect mechanism through which variation in the operational sex ratio can influence populations, through a higher incidence of fighting among the less abundant sex. Because biased sex ratios can reduce the size of the breeding population and influence rates of conflict, tracking operational sex ratio is critical for conservation

    Age and food deprivation affects expression of the glucocorticosteriod stress response in Magellanic penguin (Spheniscus magellanicus) chicks

    Get PDF
    We examined how the glucocortical stress response in free‐living Magellanic penguin (Spheniscus magellanicus) chicks changes with age and whether adrenocortical function of chicks within a brood varies in relation to food provisioned by adults. Chicks showed little corticosterone response to capture stress shortly after hatching, an intermediate response around 45‐d posthatch, and a robust stress response near fledging. However, in response to an adrenocorticotropic hormone (ACTH) challenge, hatchlings were capable of secreting corticosterone at adult‐like levels. The larger sibling in broods of two showed a similar gradual stress‐response development pattern. In contrast, by day 45, when differences in body condition were well established between siblings, the smaller, food‐deprived chicks significantly increased baseline levels of corticosterone but showed normal stress‐induced levels. Near fledging, baseline levels had returned to normal, but stress‐induced levels were lower than expected. Similar to altricial species, normally developing semialtricial Magellanic penguin chicks do not express a robust corticosterone stress response until near fledging. Chronic stressors such as food deprivation cause corticosterone use to be up‐regulated earlier than expected. However, in cases of extended chronic stress, down‐regulation may ensue, thus avoiding the negative effects of chronically elevated levels of corticosterone

    Population regulation in Magellanic penguins: what determines changes in colony size?

    Get PDF
    Seabirds are often studied at individual colonies, but the confounding effects of emigration and mortality processes in open populations may lead to inappropriate conclusions on the mechanisms underlying population changes. Magellanic penguin (Spheniscus magellanicus) colonies of variable population sizes are distributed along the Argentine coastline. In recent decades, several population and distributional changes have occurred, with some colonies declining and others newly established or increasing. We integrated data of eight colonies scattered along ~600 km in Northern Patagonia (from 41°26´S, 65°01´W to 45°11´S, 66°30´W, Rio Negro and Chubut provinces) and conducted analysis in terms of their growth rates, production of young and of the dependence of those vital rates on colony age, size, and location. We contrasted population trends estimated from abundance data with those derived from population modeling to understand if observed growth rates were attainable under closed population scenarios. Population trends were inversely related to colony size, suggesting a density dependent growth pattern. All colonies located in the north — which were established during the last decades — increased at high rates, with the smallest, recently established colonies growing at the fastest rate. In central-southern Chubut, where colonies are the oldest, the largest breeding aggregations declined, but smaller colonies remained relatively stable. Results provided strong evidence that dispersal played a major role in driving local trends. Breeding success was higher in northern colonies, likely mediated by favorable oceanographic conditions. However, mean foraging distance and body condition of chicks at fledging were influenced by colony size. Recruitment of penguins in the northern area may have been triggered by a combination of density dependence, likely exacerbated by less favorable oceanographic conditions in the southern sector. Our results reaffirm the idea that individual colony trends do not provide confident indicators of population health, highlighting the need to redefine the scale for the study of population changes.Fil: Pozzi, Luciana Melina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Garcia Borboroglu, Jorge Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Global Penguin Society. Washington; Estados Unidos. University of Washington; Estados UnidosFil: Boersma, P. Dee. Global Penguin Society. Washington; Estados Unidos. University of Washington; Estados UnidosFil: Pascual, Miguel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia; Argentin

    Lateralization (handedness) in Magellanic penguins

    Get PDF
    Lateralization, or asymmetry in form and/or function, is found in many animal species. Brain lateralization is considered adaptive for an individual, and often results in “handedness,” “footedness,” or a side preference, manifest in behavior and morphology. We tested for lateralization in several behaviors in a wild population of Magellanic penguins Spheniscus magellanicus breeding at Punta Tombo, Argentina. We found no preferred foot in the population (each penguin observed once) in stepping up onto an obstacle: 53% stepped up with the right foot, 47% with the left foot (n = 300, binomial test p = 0.27). We found mixed evidence for a dominant foot when a penguin extended a foot for thermoregulation, possibly depending on the ambient temperature (each penguin observed once). Penguins extended the right foot twice as often as the left foot (n = 121, p < 0.0005) in 2 years when we concentrated our effort during the heat of the day. In a third year when we observed penguins early and late in the day, there was no preference (n = 232, p = 0.59). Penguins use their flippers for swimming, including searching for and chasing prey. We found morphological evidence of a dominant flipper in individual adults: 60.5% of sternum keels curved one direction or the other (n = 76 sterna from carcasses), and 11% of penguins had more feather wear on one flipper than the other (n = 1217). Right-flippered and left-flippered penguins were equally likely in both samples (keels: p = 0.88, feather wear: p = 0.26), indicating individual but not population lateralization. In fights, aggressive penguins used their left eyes preferentially, consistent with the right side of the brain controlling aggression. Penguins that recently fought (each penguin observed once) were twice as likely to have blood only on the right side of the face (69%) as only on the left side (31%, n = 175, p < 0.001). The proportion of penguins with blood only on the right side increased with the amount of blood. In most fights, the more aggressive penguin used its left eye and attacked the other penguin’s right side. Lateralization depended on the behavior tested and, in thermoregulation, likely on the temperature. We found no lateralization or mixed results in the population of Magellanic penguins in three individual behaviors, stepping up, swimming, and thermoregulation. We found lateralization in the population in the social behavior fighting

    Happy Feet in a Hostile World? The Future of Penguins Depends on Proactive Management of Current and Expected Threats

    Get PDF
    Penguins face a wide range of threats. Most observed population changes have been negative and have happened over the last 60 years. Today, populations of 11 penguin species are decreasing. Here we present a review that synthesizes details of threats faced by the world’s 18 species of penguins. We discuss alterations to their environment at both breeding sites on land and at sea where they forage. The major drivers of change appear to be climate, and food web alterations by marine fisheries. In addition, we also consider other critical and/or emerging threats, namely human disturbance near nesting sites, pollution due to oil, plastics and chemicals such as mercury and persistent organic compounds. Finally, we assess the importance of emerging pathogens and diseases on the health of penguins. We suggest that in the context of climate change, habitat degradation, introduced exotic species and resource competition with fisheries, successful conservation outcomes will require new and unprecedented levels of science and advocacy. Successful conservation stories of penguin species across their geographical range have occurred where there has been concerted effort across local, national and international boundaries to implement effective conservation planning

    Occurrence of Magellanic Penguins along the Northeast Brazilian Coast during 2008 Austral Winter

    Get PDF
    During the austral winter of 2008, thousands of penguins traveled to low latitudes along the South Atlantic coast of South America. The atmospheric and oceanic conditions from April to July 2008 may account for the penguins' unusual geographic distribution. During that period, South Atlantic coastal waters were cooler; the wind anomalies had northward and onshore components; the ocean's coastal region presented northward currents that favored the penguins to travel toward lower latitudes. This anomalous climate regime resulted from extreme meteorological frontal systems that occurred mainly during June 2008. Three consecutive extreme midlatitude cyclones produced strong wind shear that resulted in the northward oceanic flow along the South American eastern shoreline favoring the penguins to be spotted in northern tropical waters

    Pollution, habitat loss, fishing and climate change as critical threats to penguins

    Get PDF
    Cumulative human impacts across the world’s oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales.Los impactos humanos acumulativos a lo largo de los océanos del planeta son considerables. Por eso examinamos un solo modelo de grupo taxonómico, los pingüinos (Sphenischidae), para explorar cómo las especies y las comunidades marinas pueden estar en riesgo de disminuir o de extinguirse en el hemisferio sur. Buscamos determinar la amenaza más importante para los pingüinos y sugerir métodos para mitigar estas amenazas. Nuestra revisión tiene relevancia para otros grupos taxonómicos en el hemisferio sur y en las latitudes norteñas, donde los impactos humanos son mayores. Nuestra revisión se basó en una evaluación experta y una revisión de literaratura de las 18 especies de pingüinos; 49 científicos contribuyeron al proceso. Para cada especie de pingüino, consideramos su rango y distribución, tendencias poblacionales y las principales amenazas antropogénicas en aproximadamente los últimos 250 años. Estas amenazas fueron la captura de adultos para obtener aceite, piel y plumas y el uso como carnada para la pesca de cangrejos y langostas: la recolección de huevos; la degradación del hábitat terrestre; la contaminación marina; la pesca accesoria y la competencia por recursos; la variabilidad ambiental y el cambio climático; y el envenenamiento por algas tóxicas y enfermedades. La pérdida de hábitat, la contaminación y la pesca, todos factores que los humanos pueden mitigar, siguen siendo las amenazas principales para las especies de pingüinos. Su resiliencia futura a más impactos por cambio climático dependerá certeramente de que nos enfoquemos en las amenazas actuales a la degradación de hábitats existentes en tierra y en el mar. Sugerimos que la protección de hábitats de reproducción, en conjunto con la designación de reservas marinas de escala apropiada, incluyendo alta mar, será crítica para la conservación futura de los pingüinos. Sin embargo, las zonas de conservación a gran escala no son siempre prácticas o políticamente viables, y otros métodos de manejo basados en ecosistemas que incluyen la zonificación espacial, la mitigación de captura accesoria, y el control fuerte de captura deben desarrollarse para mantener la biodiversidad marina y asegurar que el funcionamiento de los ecosistemas se mantenga a lo largo de una variedad de escalas.Fil: Trathan, Phil N.. British Antartic Survey; Reino UnidoFil: Garcia Borboroglu, Jorge Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Boersma, P. Dee. University of Washington; Estados UnidosFil: Bost, Charles André. Centre d´Etudes Biologiques de Chizé; FranciaFil: Crawford, Robert J. M.. Department of Environmental Affairs; SudáfricaFil: Crossin, Glenn T.. Dalhousie University Halifax; CanadáFil: Cuthbert, Richard. Royal Society for the Protection of Birds; Reino UnidoFil: Dann, Peter. Phillip Island Nature Parks; AustraliaFil: Davis, Lloyd Spencer. University Of Otago; Nueva ZelandaFil: de la Puente, Santiago. Universidad Cayetano Heredia; PerúFil: Ellenberg, Ursula. University Of Otago; Nueva ZelandaFil: Lynch, Heather J.. Stony Brook University; Estados UnidosFil: Mattern, Thomas. University Of Otago; Nueva ZelandaFil: Pütz, Klemens. Antarctic Research Trust; AlemaniaFil: Seddon, Philip J.. University Of Otago; Nueva ZelandaFil: Trivelpiece, Wayne. Southwest Fisheries Science Center; Estados UnidosFil: Wienecke, Bárbara. Australian Antarctic Division; Australi

    High-coverage genomes to elucidate the evolution of penguins

    Get PDF
    Background: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. Results: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. Conclusions: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.Fil: Pan, Hailin. Bgi-shenzhen; ChinaFil: Cole, Theresa L. University Of Otago; CanadáFil: Bi, Xupeng. Bgi-shenzhen; ChinaFil: Fang, Miaoquan. Bgi-shenzhen; ChinaFil: Zhou, Chengran. Bgi-shenzhen; ChinaFil: Yang, Zhengtao. Bgi-shenzhen; ChinaFil: Ksepka, Daniel T. Bruce Museum; Estados UnidosFil: Hart, Tom. University of Oxford; Reino UnidoFil: Bouzat, Juan L.. Bowling Green State University; Estados UnidosFil: Boersma, P. Dee. University of Washington; Estados UnidosFil: Bost, Charles-André. Centre Detudes Biologiques de Chizé; FranciaFil: Cherel, Yves. Centre Detudes Biologiques de Chizé; FranciaFil: Dann, Peter. Phillip Island Nature Parks; AustraliaFil: Mattern, Thomas. University of Otago; Nueva ZelandaFil: Ellenberg, Ursula. Global Penguin Society; Estados Unidos. La Trobe University; AustraliaFil: Garcia Borboroglu, Jorge Pablo. University of Washington; Estados Unidos. Global Penguin Society; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Argilla, Lisa S.. Otago Polytechnic; Nueva ZelandaFil: Bertelsen, Mads F.. Copenhagen Zoo; Dinamarca. University of Copenhagen; DinamarcaFil: Fiddaman, Steven R.. University of Oxford; Reino UnidoFil: Howard, Pauline. Hornby Veterinary Centre; Nueva Zelanda. South Island Wildlife Hospital; Nueva ZelandaFil: Labuschagne, Kim. National Zoological Garden; SudáfricaFil: Miller, Gary. University of Western Australia; Australia. University of Tasmania; AustraliaFil: Parker, Patricia. University of Missouri St. Louis; Estados UnidosFil: Phillips, Richard A.. Natural Environment Research Council; Reino UnidoFil: Quillfeldt, Petra. Justus-Liebig-Universit ̈ at Giessen; AlemaniaFil: Ryan, Peter G.. University of Cape Town; SudáfricaFil: Taylor, Helen. Vet Services Hawkes Bay Ltd; Nueva Zelanda. Wairoa Farm Vets; Nueva ZelandaFil: Zhang, De-Xing. Chinese Academy of Sciences; República de ChinaFil: Zhang, Guojie. BGI-Shenzhen; China. Chinese Academy of Sciences; República de China. University of Copenhagen; DinamarcaFil: McKinlay, Bruce. Department of Conservation; Nueva Zeland
    corecore